
18 

 

APPENDIX A 

INSTALLATION GUIDE 

REQUIREMENTS 

The program was developed using Microsoft’s .NET framework and as such is not natively supported 

on operating systems other than Windows. Running .NET applications on other operating systems 

will require third party software, such as Wine for Unix-like distributions.  

For Windows users’ .NET 4 or higher has to be installed for the program to run. See Microsoft’s 

website for the web installer. Supported operating systems at the time of this writing are: 

 Windows XP Service Pack 3 

 Windows Vista Service Pack 1 or later 

 Windows 7 Service Pack 1 

 Windows 8 (.NET 4.5) 

WINDOWS INSTALLATION 

The software is packaged as a .ZIP file and users have to extract the content in order to run the 

application. Windows is distributed with necessary software to extract .ZIP files. After extracting the 

contents, there are no additional requirements and the user only needs to run FHG2A.exe. 

USER MANUAL 

Running FHG2A.exe will automatically start up the default simulation which is a 9x9 cell world, with 

3 bands each starting with 20 members. The initial screen is the grid screen which displays a 

graphical representation of the world. The world consists of three zones, each of which is 

represented with a different colour in the grid (green, yellow, red). The bands are represented by 

grey circles which will move around the world as the simulation runs. 

Each cell contains up to four numbers. A cell which is occupied by a band will have four numbers 

while an unoccupied cell will only have three. In an occupied cell the first number represents the 

number of members in the occupying band, the second, third and fourth corresponds to the prey, 

barley and farm values respectively. In an unoccupied cell the first, second and third number 

corresponds to the prey, barley and farm values in that order. The values corresponding to the food 

resources can either represent the Net Acquisition Rate (NAR) or the concrete value (
    

    for plants 

or 
      

     for prey).  

The interface and the tasks it accomplishes are explained on the following page. 

  



19 

 

 

CHEAT SHEET (GRID VIEW) 

Run Time step. A simulation iteration is made when the button is clicked. The default amount of 

time steps during an iteration is 1 if the user does not enter text into the textbox. If a user enters a 

value less than 0, the time step is set to 0. If a user enters a value greater than 100, the value is set 

to 100. Any integer in the range [0, 100] is acceptable. Non-integer input prompts visual feedback 

indicating incorrect input. 

 

 

 

Run Automatically. The simulation can be run automatically. To adjust the time steps for an 

iteration, the slider has to be used. Moving the slider to the right increases the time steps per 

iteration. The left most value is 1 time step, the rightmost value is 100 time steps. 

Statistics. Switches between the grid view and statistics view. The statistics view is discussed 

separately.  

Show NAR value / Show count value. The individual cells either display the NAR value or the 

concrete value. Clicking Show NAR value switches to the NAR value being displayed and changes the 

button to Show count value. Clicking Show count value does the opposite. 

  

The program after being launched – the default settings are displayed. 



20 

 

 

 

CHEAT SHEET (STATISTICS VIEW) 

Average Total Prey. Displays the average number of prey as the number of time steps increase. This 

is calculated as the total number of prey in the world averaged over the number of cells. 

Average Total Barley. Displays the average number of barley as the number of time steps increase. 

This is calculated as the total barley count in the world averaged over the number of cells. 

Average Total Farm. Displays the average amount of cereal farmed as the number of time steps 

increase. This is calculates as the total amount of cereal farmed in the world averaged over the 

number of cells. 

Total Population. Displays the population count of all the band members combined per time step. 

Total Births. Displays a cumulative graph of the total amount of births as time steps increase. 

Total Deaths. Displays a cumulative graph of the total amount of deaths as time steps increase. 

Births by Time Step. Displays the number of band member births per time step.   

Deaths by Time Step. Displays the number of band member deaths per time step.  

  

The statistics view of the program. 



21 

 

 

CHEAT SHEET (CUSTOM SIMULATION VIEW) 

World Dimensions: 

Length. Specifies the number of vertical cells to be used for the virtual environment. The value can 

be between 3 and 21, inclusive. If a number not divisible by 3 is selected, the cells will not be equally 

distributed over the environment. 

Height. Specifies the number of horizontal cells to be used for the virtual environment. The value 

can be between 3 and 21, inclusive. If a number not divisible by 3 is selected, the cells will not be 

equally distributed over the environment. 

Note: until the world dimensions have been entered in, the other editable options are locked. 

Initial Bands. Sets the number of bands the simulation starts with. 

Initial Band Starting Members. Sets the number of members allocated to each band at the 

start of the simulation. 

Confirm. The user accepts the custom settings and the new simulation is initiated. Data 

from previous simulations will be lost. The user is returned to the grid view of the new 

simulation. 

Cancel. The user cancels the creation of a new simulation. The previous simulation is not 

lost and the user is returned to the grid view of the previous simulation.  

The view when creating a custom simulation. 



22 

 

 

CHEAT SHEET (MENU NAVIGATION)  

Show Stats. Switches the view from grid view to stats view. This option is only available 

within grid view. 

Show Grid. Switches the view from stats view to grid view. This option is only available 

within stats view. 

Start New Simulation. Switches to the custom simulation creation screen. 

Exit. Terminates the program. Running simulations cannot be recovered after terminating 

the program. 

Cancel. Cancels the creation of a custom simulation. The user is returned to the grid view of 

the previously running simulation. 

Stats Menu. A user can choose any of the graphs listed in the drop down menu. The graphs 

are explained on the previous page. 

  

Drop down menu in statistics view. Drop down menu in grid view. 

Drop down menu in custom simulation view. 



23 

 

DATA LOGS 

As the simulation runs the data of the world is written into five separate data log files. These files are 

stored in the same folder as the FHG2A.exe and are simple text files. The purpose of these files is to 

allow users to go and look at exact figures in the data or for the data of multiple runs of the 

simulation to be kept. By copy pasting the data logs to a different folder one can store the data of a 

simulation run for future reference for anyone who wants to see the results of your simulation. Note 

that the data logs are written over when a new simulation is started; this includes opening the 

program or using the new world creation screen within the program. 

The format for each data log file is provided to allow reading of the logs. 

CellBarley/Farm/Prey – these files contain the food resource for each cell for each time step. 

Format: [ TS: (Time Step Value) COORD: (cell x-coordinate),(cell y-coordinate) Val: (Concrete Value of 

the resource) NAR: (Net Acquisition rate of the resource) ] 

 

CellFile – Contains the data for each cell for each time step 

[ TS: (time step value) COORD: (cell x-coordinate),(cell y-coordinate) PreyVal: (Concrete value for the 

cell’s prey) PreyNAR: (net acquisition rate value for the cell’s prey) BarleyVal: (Concrete value for the 

cell’s barley) BarleyNAR: (net acquisition rate value for the cell’s barley) FarmVal: (Concrete value for 

the cell’s farm) FarmNAR: (net acquisition rate value for the cell’s farm) ] 

StatsFile – contains aggregated data for each time step 

[ TS: (time step value) ATP: (Sum of every cell’s prey divided by number of cells) ATB: (Sum of every cell’s 

barley divided by number of cells) ATF: (Sum of every cell’s farm divided by number of cells)  TP: (Total 

population of the world for that time step) TB: (Total births that have occurred in the world) TD: (Total deaths 

that have occurred in the world) BBT: (births that occurred that time step) DBT: (deaths that occurred that 

time step) ] 

  



24 

 

APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

moveToBestCell(ref Cell[,] cells) 

 This method encapsulates the logic behind how a band selects a cell to live in for the next time step. It 

governs what the band sees as an optimal cell as well as how these optimal cells are chosen when they 

are of equal value. 

consume()  

This method encapsulates the behaviour of how the band attains its energy. It contains the logic that 

governs what foods to eat and in what quantities as well as when the band should consider farming. 

breedOrDie(float netEnergy, Random birthRandom)  

This method contains the functionality for splitting the band into two when necessary as well as deciding 

when the band has lost members because it was unable to gather enough energy 

 

 

PACKAGE: Engine 

CLASS: Band 

The Barley class is just a simple extension of the FoodResource class and contains no methods of note. It 

exists in order to create a specialised member of the FoodResource class. 

 

PACKAGE: Engine 

CLASS: Barley 



25 

 

  

calculateScore()  

This method updates the score values of the cell’s resources which are used by the bands to judge the 

cell. 

addBand (Band newBand)  

Adds a band to the cell provided the cell was not already occupied. 

removeBand()  

Removes the current band from the cell. 

 

 

PACKAGE: Engine 

CLASS: Cell 

createNewWorld(int length,  int height, int initialBands, int startingMembers)  

This method checks the validity of a new simulation before creating a new World class with valid data. 

runTimestep()  

Increments the time step counter that exists in the engine class and then tells the World to update itself. 

Once the world is updated this method calls the FileManager class to write the Worlds data to the data 

logs. 

 

PACKAGE: Engine 

CLASS: Engine 



26 

 

  

grow()  

A specialised growth function, sets the farm value to its maximum value. 

calculateNAR()   

Specialised NAR calculation, the farm resource has a static NAR value that is returned since its beginning 

value is always its max value. 

calculateEnergy(float energyNeeded, float timeAvailable)  

Specialised energy calculation for the farm resource as it contains unique variables for use in this 

calculation. 

 

PACKAGE: Engine 

CLASS: Farming 

writeWorldToFiles()  

Writes the worlds current data to the data logs. Includes the logic behind the creation of the statistical 

data. 

readFromFile()  

Reads in the data that has been written to the data logs in order to allow for the statistics to be 

displayed for every time step without having to store the data in active memory. 

closeWriterStreams()  

Closes the writer streams so that the class can be safely destructed or so that the files can be read from 

instead. 

 

PACKAGE: Engine 

CLASS: FileManager 



27 

 

 

 

 

 

  

grow() 

 Increases the current value of the food resource according to the default growth algorithm as explained 

in the paper. 

calculateNAR()  

Calculates the Net Acquisition Rate (NAR) of the food resource according to the algorithm provided. 

calculateEnergy(float energyNeeded, float timeAvailable)  

Calculates the energy that a band is able to acquire from the resource for a time step based on the 

standard variables of a FoodResource 

repopulate(int viableCells, int chance)  

This function handles the repopulation of the FoodResource according to the standard algorithm 

provided. 

 

PACKAGE: Engine 

CLASS: FoodResource 

The Habitat class is simply for storing data relevant to many cells and contains no methods of note. 

 

PACKAGE: Engine 

CLASS: Habitat 



28 

 

 

The Prey class is just a simple extension of the FoodResource class and contains no methods of note. It 

exists in order to create a specialised member of the FoodResource class. 

 

 

 

PACKAGE: Engine 

CLASS: Prey 

runTimestep() This method calls the appropriate methods of each cell and band as well as keeps track of 

dead and newly created bands in order to modify the band data structures at the end of the time step. 

placeInitialBands() Contains the logic behind how the initial bands are placed, since the bands move 

immediately their placement isn’t actually that important provided they do not occupy the same cell. 

createCells() This method creates the initial cells as well as contains the logic of how these cells are 

assigned a habitat. 

 

 

PACKAGE: Engine 

CLASS: World 




